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Exercise 1: Landau Notation - Formal Proofs (2+2+3+3 Points)

For a function f(n), the set O
(
f(n)

)
contains all functions g(n) that are asymptotically not growing

faster than f(n). This is formalized as follows:

O
(
f(n)

)
= {g(n) | ∃c > 0,∃n0 ∈ N, ∀n ≥ n0 : g(n) ≤ cf(n)}

The set Ω
(
f(n)

)
contains all functions g(n) with f(n) ∈ O

(
g(n)

)
. Finally, Θ

(
f(n)

)
, contains all

functions g(n) for which both f ∈ O
(
g(n)

)
and g ∈ O

(
f(n)

)
is true. For each pair of functions from

(a) to (c) prove whether g(n) ∈ O
(
f(n)

)
or g(n) ∈ Ω

(
f(n)

)
or both, i.e., g(n) ∈ Θ

(
f(n)

)
.

Note: You do not have to prove negative results g(n) /∈ O
(
f(n)

)
, it suffices to claim these correctly.

(a) g(n) = 100n, f(n) = 0.1 · n2

(b) g(n) =
3
√
n2, f(n) =

√
n

(c) g(n) = log2(2
n · n3), f(n) = n Hint: You may use that log2 n ≤ n for all n ∈ N.

(d) Fill out the following table (with 3or 7) based on whether the statement is true or false.

Note: You loose 1
2 points for each wrong cell.

g ∈ O(f) f ∈ O(g) g ∈ Ω(f) f ∈ Ω(g) g ∈ Θ(f) f ∈ Θ(g)

a)

b)

c)

Exercise 2: Sort Functions by Asymptotic Growth (5 Points)

Using the O-notation definition, give an ordered sequence of the following functions based on their
asymptotic growth . Between each consecutive elements g and f in your list, insert either ≺ (in case
g ∈ O(f) and f /∈ O(g)) or ' (in case g ∈ O(f) and f ∈ O(g)).

Note: You loose 1
2 points for each error.
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Exercise 3: Recurrence Relations (3+3+3 Points)

Let α, β be constants and let T (n) be a monotonously increasing function in n ∈ N with

T (1) ≤ α, T (n) ≤ 4 · T (n/4) + β · n.

(a) Guess an upper bound for T (n) (as tight as possible, with the given knowledge about T (n), e.g.
by repeated substitution, cf. lecture). You may assume that n = 4k for some k ∈ N.

(b) Prove your upper bound via induction on k. Assume that n = 4k for some k ∈ N.

(c) Give an asymptotic upper bound (O-Notation) for T (n), assuming n = 4k for some k ∈ N. Prove
that the same bound applies to T (n) for all n ∈ N (i.e., if n is not necessarily a power of 4).

Exercise 4: Master Theorem for Recurrences (5 Points)

Use the Master Theorem for recurrences, to fill the following table. That is, in each cell write Θ
(
g(n)

)
,

such that T (n) ∈ Θ
(
g(n)

)
for the given parameters a, b, f(n). Assume T (1) ∈ Θ(1). Additionally, in

each cell note the case you used (1st, 2nd or 3rd). We filled out one cell as an example.

Note: You loose 1
2 points if the complexity class is wrong and another 1

2 if the case is wrong.

T (n)=aT (nb )+f(n) a = 1, b = 2 a = 3, b = 2 a = b = 4

f(n) = 1

f(n) = n2 Θ(n2), 2nd

f(n) = n log n

Exercise 5: Almost Closest Pairs (4+7 Points)

In the lecture, we discussed an O(n log n)-time divide-and-conquer algorithm to determine the closest
pair of points among a set of n points {x1, . . . , xn} ∈ R2 on the real plane. Assume that we are not
only interested in the closest pair of points, but in all pairs of points that are at distance at most twice
the distance between the closest two points.

(a) How many such pairs of points can there be? It suffices to give your answer using the O-notation.

(b) Devise an algorithm that outputs a list with all pairs of points at distance at most twice the
distance between the closest two points. Describe what you have to change compared to the
closest pair algorithm of the lecture and analyze the running time of your algorithm.
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